Density-functional theory study of the catalytic oxidation of CO over transition metal surfaces
نویسندگان
چکیده
In recent years, due to improvements in calculation methods and increased computer power, it has become possible to perform first-principles investigations for ‘simple’ chemical reactions at surfaces. We have carried out such studies for the catalytic oxidation of CO at transition metal surfaces, in particular, at the ruthenium surface for which unusual behavior compared to other transition metal catalysts has been reported. High gas pressure catalytic reactor experiments have revealed that the reaction rate over Ru for oxidizing conditions is the highest of the transition metals considered — in contrast, under ultra-high vacuum conditions, the rate is by far the lowest. We find it important for understanding the pressure dependence of the reaction that Ru(0001) can support high concentrations of oxygen at the surface. Under these conditions, the O–metal bond is atypically weak compared to that at lower coverages. We have investigated a number of possible reaction pathways for CO oxidation for the conditions of high oxygen coverage, including scattering reactions of gas-phase CO at the oxygen covered surface (Eley–Rideal mechanism) as well as the Langmuir–Hinshelwood mechanism involving reaction between adsorbed CO molecules and O atoms. © 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
Geometric and Electronic Structures of Vanadium Sub-nano Clusters, Vn (n = 2-5), and their Adsorption Complexes with CO and O2 Ligands: A DFT-NBO Study
In this study, electronic structures of ground state of pure vanadium sub-nano clusters, Vn (n=2-5), and their interactions with small ligands for example CO and triplet O2 molecules are investigated by using density functional theory (DFT) calibration at the mPWPW91/QZVP level of theory. The favorable orientations of these ligands in interaction with pure vanadium sub-nano clusters were determ...
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملTailoring the Energy Band Gap of Transition Metal Doped TiO2 Thin Film
Water splitting for hydrogen production under sunlight using TiO2 as photo catalyst provides a better route for solar energy and attracts the attention of many researchers. The photo catalytic activity of TiO2 under sunlight irradiation depends on the band gap energy. The transition metal doped TiO2 shows an edge over TiO2 in optical absorbance and photo catalytic activity. Thin film of Cr dope...
متن کاملDoes One-third Scheme of PBE0 Functional Dominate Over PBE0 for Electronic Properties of Transition Metal Compounds?
The one-third paradigm of PBE0 density functional, PBE0-1/3, has shown to be a successful method for various properties. In this paper, the applicability of PBE0-1/3 is put into broader perspective for transition metals chemistry. As a comparative study, the performance of PBE0 and PBE0-1/3 has been assessed for geometries and vibrational frequencies of some transition metal hydrides and transi...
متن کاملDensity functional theory study of the structural properties of cis-trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP)
In present study, the density functional theory (DFT-B3LYP) method with SVP basis set was used for optimizing and studying the electronic structural properties of cis and trans isomers of bis-(5-nitro-2H-tetrazolato-N2) tetraammine cobalt (III) perchlorate (BNCP) as powerful explosives at 298.15 K temperature and 1 atmosphere pressure. And also, Natural Bond Orbital (NBO) population analysis an...
متن کامل